تأثیر محورشدگی فعال و عناصر برشگیر در رفتار خمشی تیرهای لوله ای فولادی پرشده با بتن
پیغام مدیر :
با سلام خدمت شما بازديدكننده گرامي ، خوش آمدید به سایت من . لطفا براي هرچه بهتر شدن مطالب اين وب سایت ، ما را از نظرات و پيشنهادات خود آگاه سازيد و به ما را در بهتر شدن كيفيت مطالب ياري کنید.
بازدید : 229
نویسنده : جواد دلاکان

در سال های اخیر، مطالعات گسترده ای بر روی مقاطع لوله ای پر شده با بتن، انجام شده است. نتایج تحقیقات صورت گفته بیانگر برتری مقطع مرکب لوله ای پر شده با بتن. در مقایسه با اعضا بتن مسلح یا فولادی تنها می باشد. این نوع مقطع دارای مزایای سازه ای متعددی نظیر افزایش ظرفیت باربری. افزایش میزان جذب انرژی، تغییر شکل انعطاف پذیر، مقاومت لرزه ای سازه و میرایی مناسب می باشد. عملکرد مقاطع مرکب بتن و فولاد بدین گونه است. که، کمانش جانبی لوله فولادی به دلیل حضور هسته بتنی به تعویق افتاده است. از طرف دیگر، به دلیل محصورشدگی هسته بتنی به وسیله لوله فولادی، مقاومت فشاری هسته، افزایش یافته است.

تیرهای لوله ای فولادی

در مطالعات صورت گرفته، به طور گسترده ای، رفتار مقاطع مرکب. تحت بار محوری با و بدون خروج از مرکزیت بررسی شده است. نتایج بررسی های صورت گرفته، حاکی از افزایش باربری این مقاطع بوده است. با این که در مورد رفتار خمشی مقاطع مرکب نیز تحقیقات زیادی صورت گرفته است. اما، به طور نسبی مطالعات کمتری در رابطه با رفتار خمشی این مقاطع صورت گرفته است.

Kang و همکاران، در تحقیق خود به بررسی رفتار خمشی یک مقطع مرکب بتن. و فولاد جدید که قابلیت استفاده در شاه تیرهای پل را دارد، پرداختند. نتایج بررسی های Kang و همکاران نشان دادند. که شاه تیرهای لوله ای فولادی پر شده با بتن. انعطاف پذیری خوبی داشته. و مقاومت خود را تا پایان بارگذاری حفظ می کنند.

تحقیقات انجام شده توسط Tommi و Sakino و Lu kennedy و Kilpatrick و Rangan . در زمینه رفتار خمشی مقاطع مرکب، بیانگر انعطاف پذیری قابل ملاحظه این مقاطع بوده اند. همچنین، به دلیل وجود هسته بتنی مود شکست لوله. در ناحیه فشاری، از کانش رو به داخل به کانش رو به خارج. در بار وارده به مراتب بزرگ تری، تغییر یافته است. لازم به ذکر است که نتایج تحقیقات Probst و همکاران و Prion و Boehme نشان دادند. که برای لوله های بسیار نازک، به دلیل کمانش موضعی دیواره های لوله. محصورشدگی کافی برای توسعه ظرفیت پلاستیک بتن فراهم نمی شود. به علاوه، نتایج تحقیقات گذشته، مشخص نموده که مقطع دایره ای مؤثر ترین شکل مقطع این اعضا می باشد.

تیرهای لوله ای فولادی

Shawkat و همکاران، به بررسی رفتار خمشی مقاطع مرکب با نسبت های مختلف دهانه برشی پرداخته اند. ایشان الگوی ترک، مود شکست و مقاومت این مقاطع را آزمایش نمودند. نتایج بررسی ها، با در نظر گرفتن دهانه برش بحرانی، نشان می دهند. که الگوی ترک و اندازه آن به میزان زیادی وابسته به لغزش میان بتن و لوله می باشد.

برخی از محققین به منظور کاهش لغزش. میان بتن و لوله، اقدام بهه تعبیه برش گیرهایی در طول نمونه نموده اند. نتایج تحقیقات صورت گرفته نشان می دهند. که ظرفیت خمشی تیر مرکب و عملکرد مرکب بین بتن و فولاد، در اثر تعبیه برش گیرها، بهبود یافته است.

 

با دنبال کردن تاریخچه استفاده از پس تنیدگی در مقاطعع مرکب. دیده می شود که برای اولین بار، از مفهوم پس تنیدگی هسته بتنی مقاطع مرکب. در ساخت پل قوسی در آئورا استفاده شده است. Christopher و Tuan و Deng و همکاران نیز به بررسی اثر پس تنیدگی در رفتار خمشی مقاطع پرداخته اند. در این تحقیقات برای پس تنیدگی هسته بتنی، کابلی با مقاومت بالا در داخل لوله فولادی تعبیه شده است. سپس در داخل لوله بتن منبسط شونده پمپ شده است. پس از سخت شدن بتن، با کشیدن کابل، یک نیروی فشاری در هسته بتنی ایجاد شده است. نتایج تحقیقات حاکی از افزایش قابل ملاحظه ظرفیت خمشی مقطع. در اثر اعمال نیروی پس تنیدگی به هسته بتنی می باشد.

نتایج تحقیقات Nematzadeh و Naghipour، بیانگر افزایش مقاومت فشاری و مدول الاستیسته بتن در اثر اعمال فشار اولیه بر روی بتنِ تر و خروج آب اضافی آن می باشد. لازم به ذکر است که اعمال فشار اولیه بر روی بتنِ تر و خروج آب اضافی. منجر به تغییر نوع محصورشدگی از حالت منفعل به فعال شده است.

 

Naghipour و همکاران، به بررسی عوامل مؤثر بر رفتار خمشی تیرهای مرکب پر شده با بتن پرداختند. ایشان نتیجه گرفتند. که محصور شدگی فعال تأثیری در مورد شکست نمونه ندارد. هرچند، محصور شدگی فعال سبب کاهش میزان و شدت خردگی بتن. در ناحیه فشاری و وسعت ناحیه ترک خورده و عمق ترک در ناحیه کششی نمونه می گردد. به علاوه، نتایج تحقیقاتشان نشان داد که محصورشدگی فعال هسته بتنی. بهترین بازدهی را در مقطعی با نسبت D/t=30 و مقاومت فشاری پایین هسته بتنی، دارد. در مقطع با نسبت D/t=30 و مقاومت فشاری پایین هسته بتنی. میزان انرژی جذب شده و ظرفیت خمشی مقطع به طور همزمان افزایش می یابد.

 

در این تحقیق با استفادده از ایده های محققین پیشین. که مبنای اصلی آنها افزایش مقاومت در برابر لغزش میان بتن و فولاد می باشد. به بررسی رفتار خمشی مقاطع مرکب پرداخته شده است. هدف اصلی در این تحقیق یافتن راهی مناسب برای افزایش مقاومت خمشی و بهبود رفتار مقاطع مرکب می باشد. بدین منظور، دو راهکار در نظر گرفته شده است. راهکار اول تعبیه برش گیر در طول نمونه می باشد. راهکار دوم، اعمال فشار اولیه بر بتن و خروج اب اضافی موجود در بتن می باشد. (منظور از آب اضافی، آبی است.

که برای عمل هیدراتاسیون مورد استفاده قرار نمی گیرد). کلیه نمونه ها، با بارگذاری سه نقطه ایی و به صورت استاتیکی مورد آزمایش قرار گرفتند. در این تحقیق، پارامترهایِ مقاومت فشاری هسته بتنی، نسبت طول به قطر (L/D). نسبت قطر به ضخامت لوله (D/t)، مقاومت تسلیم لوله. و میزان فشار اعمالی بر روی نمونه های با محصورشدگی فعال، ثابت می باشد. در نهایت، ظرفیت خمشی، میزان جذب انرژی، مود شکست و نحوه ترک خوردگی بتن در لحظه شکست، برای نمونه های با محصورشدگی فعال و نمونه های دارای برش گیر، با نمونه مرکب متداول مورد مقایسه قرار گرفتند.

بررسی آزمایشگاهی

هدف اصلی این تحقیق برری اثر تعبیه برش گیر و پیش تنیدگی بر روی رفتار خمشی مقاطع مرکب می باشد. بدین منظور، چهار نمونه مرکب با انتهای مفصلی شامل نمونه بدون برش گیر. و با محصورشدگی منفعل، نمونه بدون برش گیر. و با محصورشدگی منفعل، نمونه با برش گیر و با محصورشدگی منفعل. و نهایتاً نمونه با برش گیر و با محصورشدگی فعال، به صورت آزمایشگاهی بررسی شده اند. در بخش های بعدی شرح مفصلی از دستگاه پیش تنیدگی، نمونه های آزمایش. مصالح استفاده شده و روش انجام آزمایش فراهم شده است.

دستگاه پیش تنیدگی

برای اعمال فشار اولیه بر نمونه ها و ایجاد محصورشدگی فعال، دستگاه پیش تنیدگی، طراحی و ساخته شد (شکل 1). نمونه های مرکب با هسته بتنیِ تر، در داخل دستگاه پیش تنیدگی قرار می گیرد. بر اثر فشار اولیه اعمالی بر نمونه های مرکب، نوع محصورشدگی هسته بتنی. از حالت منفعل به فعال تغییر می یابد.

دستگاه پیش تنیدگی در قسمت بالایی و میانی خود دارای صفحاتی می باشد. که به عنوان تکیه گاه جانبی برای نمونه می باشد (شکل 1). بنابر این، بار بحرانی نمونه افزایش یافته است. همچنین از کمانش نمونه جلوگیری شده است.

تیرهای لوله ای فولادی

 

 

طراحی دستگاه پیش تنیدگی به گونه ای است. که در ههر آزمایش، فقط یک نمونه را می توان در آن قرار داد. به منظور اعمال فشار بر روی نمونه، یک جک هیدرولیکی در بالای دستگاه تعبیه شده است. یک قطعه فولادی استوانه ای شکل، عامل انتقال فشار از جک به هسته بتنی نمونه است. در اثر این فشار اعمالی، آب اضافی موجود در طرح اختلاط نمونه خارج می گردد. خروج آب اضافی از شیرهای طراحی شده در طول نمونه. و فاصله اندک بین قطعه فوقانی و تحتانی دستگاه با نمونه، صورت می گیرد.

به منظور جلوگیری از خروج دوغاب سیمان از شیرهای تعبیه شده. بر روی هر شیر، از فیلترهای مخصوصی استفاده شده است. عملکرد فیلترها به گونه ای است که فقط آب می تواند از آن عبور کند (شکل 2). به علاوه، فاصله اندک میان قطعات فوقانی و تحتانی دستگاه با نمونه. فقط امکان خروج برای آب را فراهم می کند. نمونه زمانی از دستگاه خارج می گردد که دیگر آبی از آن خارج نگردد.

نمونه ها

در این تحقیق، چهار نمونه به صورت آزمایشگاهی بررسی شده اند. طول خالص و دهانه آزاد کلیه نمونه ها، به ترتیب برابر 1000 و 660 میلی متر می باشد. در برخی از نمونه ها، از برش گیر برای افزایش مقاومت در برابر لغزش. و در برخی دیگر از اعمال فشار اولیه بر روی نمونه ها استفاده شده است. در نمونه هایی که بعد از ریختن بتن در لوله، بر آنها فشار اولیه اعمال می شود. نوع محصورشدگی از حالت منفعل به حالت فعال تغییر می یابد. در نمونه های با محصورشدگی فعال، در طول نمونه به فواصل L/3 دو شیر. برای خروج آب اضافی بتن تعبیه شده است.

 

بمنظور بررسی اثرات تعبیه برش گیر در طول نمونه. اعمال فشار اولیه بر روی نمونه و اثر ترکیبی آنها با یکدیگر. چهار نمونه مورد بررسی قرار گرفت (جدول 1). نمونه اول تحت عنوان S-P-Nsh، یک نمونه عادی می باشد. که محصورشدگی در آن از نوع منفعل بوده و هیچ برش گیری در آن تعبیه نشده است. نمونه دوم، S-P-Sh، مشابه نمونه قبلی بوده. با این تفاوت که در آن برش گیرهایی در طول نمونه تعبیه شده است. همچنین، نمونه سوم با عنوان S-A-Nsh،مشابه نمونه اول بوده با این تفاوت که نوع محصورشدگی آن فعال می باشد. و بالاخره نمونه چهارم، S-A-Sh، در این نمونه محصورشدگی از نوع فعال بوده. و به علاوه در طول نمونه برش گیر نیز تعبیه شده است. برای مقایسه اثر تعبیه برش گیر و اعمال فشار اولیه بر روی رفتار خمشی نمونه ها. یک نمونه (S-P-Nsh)، به عنوان مرجع در نظر گرفته شده است.

تیرهای لوله ای فولادی

همانطور که مشاهده می شود. نامگذاری هر نمونه به وسیله فاکتور مقاوم آن در برابر لغزش و در سه قسمت انجام شده است. در عبارت اول، حرف S، اولین حرف کلمه نمونه است. و به صورت مشترک در تمامی نمونه ها استفاده شده است.

همانطور که مشاهده می شود. نامگذاری هر نمونه به وسیله فاکتور مقاوم آن در برابر لغزش و در سه قسمت انجام شده است. در عبارت اول، حرف S، اولین حرف کلمه نمونه است. و به صورت مشترک در تمامی نمونه ها استفاده شده است. اما حرف دوم نشان دهنده نوع محصورشدگی در نمونه ها می باشد. در نمونه های با محصورشدگی منفعل از حرف P. و در نمونه های با محصورشدگی فعال از حرف A استفاده شده است. در نهایت حرف سوم، بیان کننده وضعیت نمونه از لحاظ برش گیر می باشد. بدین معنا که برای نمونه های با برشگیر حروف Sh. و برای نمونه های بدون برش گیر حروف Nsh به کار برده شده است.

تیرهای لوله ای فولادی

در نمونه هایی که دارای برش گیر می باشند. در انتهای فوقانی لوله، در طولی معادل طول قطعه فوقانی دستگاه پیش تنیدگی، از تعبیه برش گیر اجتناب شد. بنابراین قطعه فوقانی قادر خواهد بود. تا به راحتی در اثر فشار اعمال شده و خروج آب اضافی بتن، در داخل لوله حرکت نماید (شکل 3).

همچنین از قرار دادن برش گیرها. در ناحیه میانی لوله که بیشترین مقدار لنگر خمشی در آن رخ می دهد، اجتناب شد. بنابراین از ضعف نمونه در این منطقه جلوگیری گردید. در این صورت، نمونه در آزمایش خمش به علت شکست موضعی در محل برش گیر، تخریب نمی گردد.

بتن ریزی در کلیه نمونه ها، در حالت ایستاده انجام شده است. در نمونه های با محصورشدگی منفعل، بتن ریزی در سه لایه و کوبیدن 25 ضربه ای هر لایه. صورت گرفته است. اما در نمونه های با محصورشدگی فعال، بتن ریزی بدون هیچ گونه تراکم یا ویبراسیونی صورت گرفته است.

تیرهای لوله ای فولادی

نمونه با محصورشدگی فعال بعد از بتن ریزی، در دستگاه پیش تنیدگی تحت فشار اولیه قرار می گیرد. قابل ذکر است برای تعیین مقاومت فشاری هسته بتنی، در زمان بتن ریزی نمونه های مرکب. تعدادی نمونه های مکعبی نیز تهیه شده است. نمونه های مکعبی، بعد از گذشت 2 روز از قالب خارج می شوند. سپس، این نمونه ها در محیط کاملاً اشباع نگهداری می شوند. در زمان آزمایش خمشی نمونه های مرکب، تست فشاری نمونه های مکعبی نیز انجام می شود.

مصالح

در این تحقیق از لوله های فولادی با قطر 60 میلی متر و ضخامت 2 میلیمتر استفاده شده است. تنش تسلیم و تنش نهایی لوله فولادی استفاده شده در این تحقیق. با انجام آزمایش کشش بر مبنای آیین نامه ASTM A370-10 بدست آمده است. و تنش های تسلیم و نهایی لوله فولادی به ترتیب برابرند با 435 و 500 مگاپاسکال. همچنین طرح اختلاط بتن به گونه ای است که فقط یک مقاومت فشاری (12 مگاپاسکال) برای بتن بدست آید.

طرح اختلاط بتن بر مبنای آیین نامه بتن آمریکا (ACI) صورت گرفته است. قطر بزرگترین دانه شن در این طرح اختلاط برابر 9/5 میلیمتر در نظر گرفته شده است. در طرح اختلاط بتن، از ماسه با مدول نرمی 2/88 استفاده گردید. آب و سیمان پرتلند تیب II سایر اجزا تشکیل دهنده بتن می باشند. در طرح اختلاط مورد نظر از هیچ ماده افزودنی استفاده نشده است. تا عملکرد تعبیه برشگیر و اعمال فشار اولیه بر روی نمونه، تحت تأثیر قرار نگیرد.

روش انجام آزمایش

همانطور که در بخش (2-1) گفته شد. نیمی از نمونه ها تحت محصورشدگی فعال قرار گرفتند. این نمونه ها، بعد از بتن ریزی در داخل دستگاه پیش تنیدگی قرار گرفته اند. فشار اولیه توسط جک به نمونه ها اعمال شده است. سپس کلیه نمونه ها به مدت 28 روز، در شرایط آزمایشگاهی و به صورت ایستاده نگهداری شده اند. شرایط نگهداری به این گونه بوده که دو انتهای لوله به وسیله نایلون بسته شد. تا از تبخیر آب بتن جلوگیری شود. بعد از گذشت 28 روز، نمونه ها به وسیله دستگاه STM150 (تولید کشور ایران و شرکت سنتام). تحت بارگذاری سه نقطه ای قرار گرفتند. در محل اعمال بار، از ورق هایی استفاده شد تا تمرکز تنش در محل بارگذاری کاهش یابد (شکل 4).

بنابر این از شکست موضعی نمونه ها جلوگیری شده است. همچنین، تجهیزات نصب شده در دو انتهای نمونه به گونه ای است. که شرایط تکیه گاه مفصلی را برای هر دو انتها فراهم می کند (شکل 4).

تیرهای لوله ای فولادی

بارگذاری نمونه به صورت کنترل تغییر مکان با سرعت 2mm/min صورت گرفت. مقادیر بار و خیز وسط دهانه در فواصل مشخص اندازه گیری و ثبت شدند.

نتایج آزمایشگاهی

در ادامه نتایج و مشاهدات حاصله در چند بخش ارائه شده اند. شکل 5، نمودار بار – جابجایی وسط دهانه کلیه نمونه ها را نشان می دهد. ظرفیت خمشی نهایی نمونه ها، خیز نهایی، سختی الاستیک و پلاستیک نمونه ها متفاوت بوده است (شکل 5). در قسمت های بعدی در مورد رفتار، مقاومت نهایی، مود شکست. الگوی ترک و سختی های الاستیک و پلاستیک و اثرات عوامل متعدد. به طور مفصل بحث و بررسی شده است.

تیرهای لوله ای فولادی

رفتار و مود شکست نمونه ها

همانطور که در نمودارهای شکل (5) مشاهده میشود. رفتار کلیه نمونه ها انعطاف پذیر می باشد. می توان مشاهده نمود که نمونه با محصورشدگی منفعل. و بدون برش گیر بیش ترین انعطاف پذیری را نسبت به سایر نمونه ها. از خود نشان می دهد. همچنین نتایج نشان داد که شکست در کلیه نمونه ها. با پارگی لوله فولادی در ناحیه کششی رخ داده است (شکل 6). در اثر اعمال بار، در ناحیه فشار لوله نیز کمانش موضعی رخ داده است. شدت کمانش موضعی در ناحیه فشاری، تابع نوع نمونه مورد نظر است (شکل 6).

افزودن برش گیر باعث رفتار تردتر نمونه ها می شود (شکل 5). تعییر در نوع رفتار نمونه مستقل از نوع محصورشدگی می باشد. در نمونه با محصورشدگی منفعل که برش گیر نیز در آن تعبیه شده است (S-P-SH). در ناحیه فشاری لوله، کمانش موضعی کمی رخ می دهد. هرچند، مود شکست حاکم بر نمونه S-P-Sh، پارگی در ناحیه کششی می باشد. اما در نمونه با محصورشدگی منفعل و بدون برش گیر (S-P-Nsh). رفتار انعطاف پذیر نمونه همراه با کمانش موضعی لوله در ناحیه فشاری بوده است.

تیرهای لوله ای فولادی
تیرهای لوله ای فولادی

به علاوه، مود شکست حاکم در نمونه (S-P-Nsh). پارگی لوله در ناحیه کششی توأم با خردشدگی بتن در ناحیه فشاری، می باشد. نهایتاً، در نمونه های با محصورشدگی فعال، کمانش موضعی کمتری در ناحیه فشاری لوله مشاهده می شود (شکل 6).

الگوی ترک خوردگی نمونه ها

برای بررسی نحوه گسترش ترک در نمونه ها، قسمتی از لوله فولادی در دو ناحیه فشاری و کششی. پس از آزمایش خمشی بریده شده است. لذا، خرد شدگی بتن در ناحیه فشاری و توزیع ترک ها در ناحیه کششی آشکار شده. و مورد بررسی قرار گرفتند (شکل 7).

تیرهای لوله ای فولادی

تیرهای لوله ای فولادی

در ناحیه فشاری نمونه، سطح بتن در تماس با ناحیه کمانش یافته لوله فولادی، خرد شده است (شکل 7). همچنین مشاهده می شود. که بتن ناحیه کششی در نمونه های با محصورشدگی فعال. دچار ترکهای با عمق کمتری نسبت به نمونه های با محصور شدگی منفعل می باشد. نمونه S-A-Sh، کمترین میزان ترک را نسبت به سایر نمونه ها داراست.

بعلاوه می توان نتیجه گرفت که استفاده از برش گیر منجر به بهبود رفتار بتن در ناحیه فشاری شده است. بنابراین، بتن در ناحیه کوچک تری دچار خردگی شده است.

بدین نوع ترک در ناحیه کششی، متعلق به نمونه با محصورشدگی منفعل و بدون برش گیر (S-P-Nh) می باشد. به علاوه، از مقایسه نمونه های با محصورشدگی منفعل. با و بدون برش گیر (S-P-Sh و S-P-Nsh) می توان نتیجه گرفت. که تعبیه برش گیر تأثیر چندانی در کاهش ترک ها نداشته است.

بطور کلی می توان گفت که محصورشدگی فعال نقش مؤثری در کاهش ترک های ناحیه کششی دارد. با این حال، افزودن برش گیرها تأثیری در کاهش ترک های ناحیه کششی ندارد.

ظرفیت خمشی و انرژی جذب شده

میزان انرژی جذب شده. هر نمونه را با محاسبه سطح زیر منحنی بار – تغییر مکان وسط دهانه آن نمونه. می توان محاسبه نمود. در جدول (2)، مقادیر بار نهایی، ظرفیت خمشی و میزان انرژی جذب شده برای هر نمونه آورده شده است. در بخش های بعدی، از اعداد این جدول، برای مقایسه اثرات ناشی از تعبیه برشگیر. و تغییر نوع محصور شدگی استفاده شده است.

فولاد ck15

بررسی اثرات ناشی از نصب برش گیر

به منظور بررسی اثرات تعبیه برش گیر در نمونه ها. نتایج حاصله برای دو حالت با و بدون برش گیر مقایسه شدند. این مقایسه در دو گروه فعال و منفعل صورت گرفت. تنها عامل متغیر در دو گروه، وجود و یا عدم وجود برش گیرها می باشد. لذا می توان اثرات افزودن برش گیر برای هر دو نوع محصورشدگی فعال و منفعل را بررسی نمود. گروه فعال، شامل نمونه های با محصورشدگی فعال یعنی S-A-SH و S-A-Nsh می باشد. همچنین، گروه منفعل، از نمونه های با محصورشدگی منفعل یعنی S-P-Sh و S-P-Nsh تشکیل شده است. شکل (8)، نمودار بار – تغییر مکان وسط دهانه را برای هر دو گروه نشان می دهد.

فولاد ck15

تعبیه برش گیر در طول نمونه سبب افزایش در سختی اولیهه نمونه های هر دو گروه شده است (شکل 8). هرچند، شدت افزایش سختی الاستیک، در نمونه های فعال به مراتب بیشتر از نمونه های منفعل می باشد. همچنین، می توان نتیجه گرفت که قرار دادن برش گیر در طول نمونه. افزایش چندانی در سختی پلاستیک نمونه های دو گروه ایجاد نمی کند.

شکست در کلیه نمونه ها با پاره شدن لوله در ناحیه کششی همراه بوده است (شکل 7). به علاوه، در اثر آزمایش خمشی نمونه ها، در ناحیه فشاری لوله، کمانش موضعی رخ داده است. میزان و شدت کمانش موضعی لوله ها، بر حسب نوع نمونه متفاوت است. برای هر دو گروه فعال و منفعل، تعبیه برش گیر در طول نمونه، باعث کاهش شدت موج های تشکیل شده. در اثر کمانش موضعی لوله در ناحیه فشاری شده است. همچنین شدت پارگی لوله در نمونه های با برش گیر بسیار قابل ملاحظه می باشد (شکل 7).

فولاد ck15

جدول (3)، درصد تغییر مقاومت خمشی و میزان انرژی جذب شدن توسط نمونه ها، را نشان می دهد. منفی در جدول فوق، بیانگر کاهش پارامتر مورد بررسی و عدد مثبت نشان دهنده افزایش پارامتر فوق می باشد. با توجه به جدول (3) می توان دریافت که تعبیه برش گیرها در نمونه های گروه منفعل. نقش به سزایی در افزایش ظرفیت خمشی مقطع دارد.

در حالی که تعبیه برش گیرها در نمونه های گروه فعال. تأثیر کمتری در افزایش ظرفیت خمشی مقطع نسبت به نمونه های گروه منفعل دارد. این بدان معناست که تعبیه برش گیر در نمونه های مقاطع مرکب متداول. باعث افزایش چشمگیری در ظرفیت خمشی مقطع شده است.

در گروه فعال، تعبیه برش گیر سبب افزایش میزان انرژی جذب شده، می شود (جدول 3). در حالی که تعبیه برش گیر در گروه منفعل، سبب کاهش میزان انرژی جذب شده، می گردد (جدول 3).

فولاد ck15

با در نظر گرفتن میزان تغییر در ظرفیت خمشی و میزان انرژی جذب شده در نمونه ها. می توان نتیجه گرفت که تعبیه برش گیر در نمونه های فعال مناسب تر از نمونه های منفعل است. زیرا سبب افزایش هر دو عامل می گردد.

در هر دو گروه، تعبیه برش گیرها باعث رفتار تردتر نمونه ها شده است (شکل 8). بنابراین، میزان خیز نهایی در نمونه های بدون برش گیر. بیشتر از میزان خیز نهایی در نمونه های با برش گیر می باشد.

جدول 3- درصد تغییرات ظرفیت خمشی و میزان انرژی جذب شده توسط نمونه های با محصورشدگی فعال و منفعل

تیرهای لوله ای فولادی
فولاد ck15

بررسی اثرات نوع محصورشدگی

نمونه ها در دو گروه با برش گیر و بدون برش گیر قرار گرفتند. تنها پارامتر متغیر در هر گروه نوع محصورشدگی می باشد. گروه اول شامل نمونه هایی می باشد. که در آنها از برش گیر استفاده نشده است (S-A-Nsh و S-P-Nsh). گروه دوم نمونه های با برشگیر می باشند (S-A-Sh و S-P-Sh).

محصورشدگی فعال سبب افزایش سختی الاستیک نمونه ها، در هر دو گروه می گردد (شکل 9). در ضمن، میزان افزایش سختی الاستیک برای نمونه هایی که در آن برش گیر تعبیه شده است. به مراتب بیشتر است. همچنین، نوع محصورشدگی تأثیر چندانی بر روی سختی پلاستیک نمونه ها ندارد (شکل 9).

فولاد ck15

نوع محصورشدگی تأثیر بسزایی در شدت و میزان کمانش موضعی لوله در ناحیه فشاری نمونه ها دارد (شکل 6). تأثیر نوع محصورشدگی در کمانش موضعی لوله در ناحیه فشاری، در نمونه های بدون برش گیر محسوس تر می باشد. در نمونه بدون برش گیر، اعمال فشار اولیه بر روی نمونه، باعث می شود. که از شدت کمانش موضعی لوله در ناحیه فشاری کاسته شود. با توجه به کاهش میزان کمانش موضعی نمونه ها در اثر اعمال فشار اولیه. شاید بتوان از مقاطع با نسبت D/t بزرگ تر نیز استفاده نمود.

تیرهای لوله ای فولادی

محصورشدگی فعال منجر به افزایش ظرفیت خمشی نمونه ها در هر دو گروه شده است. (جدول 4). هر چند، تأثیر محصورشدگی فعال در افزایش ظرفیت خمشی نمونه های بدون برش گیر چشمگیر بوده است. همچنین، محصورشدگی فعال تأثیری بسیار قابل ملاحظه ای در میزان جذب انرژی نمونه های با برش گیر دارد. در ضمن، تغییر نوع محصورشدگی در نمونه های بدون برش گیر، تأثیر ناچیزی در تغییر میزان انرژی جذب شده دارد. چنان که می توان از اثر محصورشدگی فعال. در تغییر میزان انرژی جذب شده نمونه های بدون برش گیر صرف نظر نمود.

جدول 4- درصد تغییرات ظرفیت خمشی و میزان انرژی جذب شده توسط نمونه های با و بدون برش گیر

تیرهای لوله ای فولادی

مقایسه از محصورشدگی فعال و برش گیر

برای شناسایی مؤثرترین روش بهبود رفتار خمشی تیر مرکب، دو نمونه S-P-SH و S-A-Nsh. با نمونه S-P-Nsh که یک نمونه متداول مرکب می باشد. مقایسه شدند. هر دو نمونه دارای سختی الاستیک بیشتری نسبت به نمونه مرجع می باشند (شکل 10). همچنین، میزان سختی الاستیک در هر دو نمونه S-P-SH و S-A-Nsh برابر می باشد. در حالی که میزان سختی پلاستیک در هر سه نمونه تقریباً یکسان بوده و اختلاف چندانی میان آنها وجود ندارد.

به علاوه مشاهده می شود که نمونه مرجع رفتار انعطاف پذیرتری نسبت به دو نمونه دیگر دارد. این بدان معناست که تعبیه برش گیر و تغییر نوع محصورشدگی، از انعطاف پذیری نمونه می کاهد. تعبیه برش گیرها، سبب رفتار بسیار ترد نمونه شده است. در حالی که نمونه با محصورشدگی فعال رفتار انعطاف پذیری دارد (شکل 10).

تیرهای لوله ای فولادی

نکته قابل توجه دیگر این ست که مود شکست هر سه نمونه یکسان می باشد. همچنین شکست در هر سه نمونه به علت پارگی لوله در ناحیه کششی. همزمان با خردشدگی بتن در ناحیه فشاری رخ داده است.

استفاده از برش گیر در نمونه، منجر به افزایش 50 درصدی ظرفیت خمشی نمونه شده است (جدول 5). همچنین در اثر تعبیه برش گیر در نمونه، میزان انرژی جذب شده حدود 40 درصد کاهش یافته است. به علاوه، تغییر در نوع محصورشدگی باعث افزایش 30 درصدی ظرفیت خمشی می شود. در حالی که تغییر در میزان انرژیی جذب شده در اثر تغییر در نوع محصورشدگی بسیار ناچیز بوده. و قابل اغماض می باشد. با در نظر گرفتن هر دو عامل تعبیه برش گیر و محصورشدگی فعال. میتوان محصورشدگی فعال را مؤثر تر از تعبیه برش گیر در نمونه دانست. زیرا علاوه بر این که سبب افزایش ظرفیت خمشی نمونه شده است. کاهشی در میزان انرژیی جذب شده، ایجاد نکرده است.

تیرهای لوله ای فولادی

نتیجه گیری

نتایج بدست آمده از تحقیق حاضر به طور خلاصه به شرح زیر می باشد.

1- در اثر تعبیه برش گیر در سطح داخلی لوله فولادی و محصورشدگی فعال، رفتار نمونه تردتر می شود.

2- شکست در کلیه نمونه ها به دلیل پارگی لوله در ناحیه کششی. همزمان با خردشدگی بتن در ناحیه فشاری بوده است. تعبیه برش گیر در سطح داخلی لوله فولادی و یا محصورشدگی فعال هسته بتنی. باعث کاهش گسترش ترک ها و کمانش موضعی لوله در ناحیه فشاری می شود.

تیرهای لوله ای فولادی

3- سختی الاستیک با تعبیه برش گیر و یا محصورشدگی فعال نمونه افزایش می یابد. همچنین استفاده همزمان از برشگیر و محصورشدگی فعال، به طور محسوسی سبب افزایش سختی الاستیک نمونه می گردد.

4- تعبیه برش گیر در سطح داخلی لوله فولادی و محصورشدگی فعال هسته بتنی. به ترتیب منجر به افزایش 50 و 30 درصدی ظرفیت خمشی نمونه می شود.

5- در اثر تعبیه برش گیر در نمونه، میزان جذب انرژی در نمونه حدود 40 درصد کاهش می یابد. در حالی که تغییر نوع محصور شدگی تغییر ناچیزی در میزان انرژی جذب شده ایجاد نموده. که قابل صرف نظر کردن است



:: برچسب‌ها: تأثیر محورشدگی فعال و عناصر برشگیر در رفتار خمشی تیرهای لوله ای فولادی پرشده با بتن , لوله فولادی , لوله درز دار , لوله بدون درز , لوله مانیسمان , ,



مطالب مرتبط با این پست
.



می توانید دیدگاه خود را بنویسید


نام
آدرس ایمیل
وب سایت/بلاگ
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

آپلود عکس دلخواه: